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LE'ITER TO THE EDITOR 

Quadratic spatial anisotropy model with singularities: 
comparison between exact solution and renormalisation group 
for crossover dependence 

Shi-Quing Wang and Karl F Freed 
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA 

Received 27 January 1986, in final form IS April 1986 

Abstract. We consider a quadratic spatially anisotropic model, with a ( d  - d,)-dimensional 
defect hyperplane embedded in d space, and provide the exact solution for the defect 
hyperplane correlation length and susceptibility for arbitrary E~ = 2 - d ,  > 0. A perturbation 
expansion in the defect surface interaction displays singularities in E ,  and therefore requires 
renormalisation. Renormalisation group descriptions of the crossover dependence of 
scaling amplitudes on the strength of the surface interaction are compared with the exact 
analytic solution. The close analytic similarities between the renormalisation group cross- 
overs for scaling amplitudes in the spatially anisotropic model and in 44 field theory 
suggests that our results for the former have a beating on the expected faithfulness of the 
latter. 

Renormalisation group calculations, especially those using E expansion techniques 
(Wilson and Kogut 1974, Fisher 1974, Amit 1978), have been extremely useful in 
studying critical phenomena. Models have been considered using 44 (or 44- 46) field 
theories, possibly including quadratic anisotropy either in spin or in position space 
(Aharony 1976, Domany et a1 1977, Blankschtein and Aharony 1983, Goldschmidt 
1983, Nemirovsky and Freed 1985a, b). Some studies focus primarily on the computa- 
tion of critical exponents where there are independent numerical checks on the accuracy 
of renormalisation group results, but there is also a growing interest in the description 
of the crossover between various fixed points limits. Complicated crossover analyses 
are generally limited to the use of low-order perturbation expansions and serious 
questions, therefore, exist concerning the accuracy of these low-order calculations. 

Exact solutions to non-trivial models are immensely useful in providing guidance 
through the quagmire of approximation techniques and here we provide one such 
example in which approximate low-order renormalisation group descriptions can be 
compared with exact closed form solutions. More explicitly, we consider the n- 
component +2 model with a spatial anisotropy involving the interaction with a 
penetrable ( d  - d,)-dimensional planar hypersurface. The free energy functional for 
this model is 

F = ddr[$(V4)2+ft42+$co 8d1(r,)42] (1) i 
where 4 = (b l ,  42,. . . , 4n) is the order parameter, t cc T -  To is the bare reduced 
temperature with To the mean-field bulk critical temperature, co is the bare surface 
interaction parameter, rl is the component of position vectors orthogonal to the surface 
and SdL is a d,-dimensional delta function. Equation (l), when supplemented by a 
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g044 contribution and restricted to d ,  = 1, has been extensively used to analyse critical 
phenomena near an interacting impenetrable surface (Bray and Moore 1977, Diehl 
and Dietrich 1980, 1981a,b, Nemirovsky and Freed 1985a,b, Binder 1983). The 
restriction to d ,  = 1 enables the full propagator, evaluated from F of ( l ) ,  to be computed 
exactly. The additional 44 contribution may then be treated perturbatively with E 

expansion methods and with the zeroth-order propagator including a full crossover 
dependence on c, (Goldschmidt 1983, Nemirovsky and Freed 1985a). 

Here we follow the suggestion of Kosmas (1985) within a ( n  + 0 limit) polymer 
context of analytically continuing to continuous d,. The perturbation expansion of 
(1) in powers of co is shown here to contain singularities as a function of d, and 
therefore to require renormalisation. Burkhardt and Eisenriegler (1981) have previously 
noted that the model (1) has the critical dimensionality d, = 2 at which it acquires 
logarithmic corrections. This is equivalent to our observation that the model also leads 
to singularities in E ,  = 2 - d ,  and therefore requires renormalisation. Following Burk- 
hardt and Eisenriegler (1981), we consider this class of models to be non-trivial because 
they contain singularities and they provide exactly solvable examples against which 
to test renormalisation group concepts. For instance, a 42 theory with mass anisotropy 
(a simple homogeneous quadratic anisotropy) does not produce singularities and is, 
therefore, a trivial model in this sense. 

The perturbation expansion of (1) in powers of co is shown here to be amenable 
to exact closed form solution by standard renormalisation group E ,  expansions, thereby 
providing a non-trivial zeroth-order model for critical phenomena at defect planes, 
etc. The study of this model is also a useful prelude to investigating the double 
crossover produced by the more general case with both g044 and coS(r,)$J2. This 
crossover has been considered for d ,  = 1 (Goldschmidt 1983, Nemirovsky and Freed 
1985a) and is rather complicated. There are, however, indications that the approach 
of taking d ,  to be a continuous variable leads to essential simplifications. 

The renormalisation group crossover in c, the renormalised counterpart of co, is 
compared with the exact solution to assess the faithfulness of the renormalisation 
group description of crossovers. We are aware of no other such comparisons using 
non-trivial models. Furthermore, as explained below, although the E expansions for 
44 field theories are more complicated than the E ,  ones for the anisotropic 42 models, 
the formal structure of the renormalisation constants and the Gell-Mann-Low functions 
is identical to order E and E,, respectively (only numerical coefficients differ). Since 
the solution to the renormalisation group equation depends on the Gell-Mann-Low 
functions, the structure of this solution is very similar for the anisotropic 42 models 
and d4 models and the resultant crossover behaviours for scaling amplitudes have 
many features in common. 

The two-point correlation function G( k )  in momentum space is obtained from (1) 
using standard techniques (Amit 1978) as 

where the free propagator is Go(k)  = ( k 2 +  t ) - ' ,  k ,  is the Fourier conjugate of rl. and 
k = ( k , ,  k , , ) .  The geometric series in ( 2 )  is readily summed to give the exact closed 
form solution 
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The integral in ( 3 )  is evaluated using dimensional regularisation: 

where r (~ , /2 )  is the gamma function. Equation (1) yields a two-point function in (3) 
which is independent of the number of spin components. 

The exact in-plane correlation length t i  in the hypersurface of dimensions dll( = d - 
d , )  and the susceptibility ,y are evaluated, respectively, as 

ti= - ( - ( G ( k ) ) - ' )  k=O 

aki  
= r-'{l- co(4.R)-dJ2r(l + ~ , / 2 ) t - ~ J ~ [ i +  ~ , ( 4 ~ ) - ~ l ' ~ r ( ~ , / 2 ) f - ~ ~ ' ~ ] - ~ }  

( 5 )  

( 6 )  ,y = G( k = 0) = t - ' [  1 + C~(~.R)-~~"I ' (  ~ ~ / 2 ) t - ' l ' ~ ] - ' .  

In addition to the divergence of ( 5 )  and ( 6 )  at the bulk critical point t = 0, when co is 
negative, both and ,y diverge at the shifted critical temperature T, 

T, = T,+ [ I ~ ~ l ( 4 ~ ) - ~ . l ~ r ( ~ , / 2 ) ] ~ / ~ .  (7) 

corresponding to the surface transition. 
Now we consider the renormalisation group calculation of the crossover dependence 

of (fi on the renormalised counterpart of co. For this purpose it is convenient to rewrite 
( 5 )  as the bare perturbative expansion 

f - ' { l  -r(1+ & L / 2 ) U I ( K / f ) ' L ' 2 [ 1  - U ~ ( K / t ) E " 2 r ( E 1 / 2 )  

+ ( U : ) 2 ( K / f ) ' 1 r 2 ( & L / 2 ) -  . . .]} (8) 

(8a)  U: = C o , - ' L / 2 ( 4 T ) - d _ / 2  

with K having the dimensions of t .  Equation ( 8 )  clearly displays poles in E ,  as arising 
from the factors of I ' ( E , / ~ )  when E,+O. Furthermore, the truncated form of (8) is 
undefined for co + a. Hence, equation (8) requires standard renormalisation. 

where the dimensionless surface interaction (anisotropy) parameter is defined as 

As usual, define the renormalisation constant Z by 

U: = zsu, .  (9) 

z , = 1 + 2 u , / E , + ( 2 u , / & , ) ~ +  . . .  (10) 

Simple algebra shows that 

eliminates poles through second order in E ,  in (8). Then (8) through second order in 
the renormalised U, is found as 

( 1 1 )  

where the gamma functions in (8) have been E ,  expanded and $( 1) is the psi function. 
We now provide a brief account of the renormalisation group crossover analysis in 
terms of a crossover scaling field 5, = &(U,). Then the approximate renormalisation 
group result is compared with the exact solution by introducing the relation between 
the original model parameter co and the renormalised one. 

c$fi = t -'{ 1 - U,( K /  t ) E ~ ' 2 - u s [  1 + ( E 1 / 2  - U,) $( 1 )] + O( U?,} 
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Consider a generic property F = F(co,  t )  (e.g. ti) which is written using ( 8 a )  and 
(9) in terms of U: or U,, respectively, as 

F = tPFl[ ( K /  t )  E ~ ' 2 U x ]  (12a) 

F = t P F l [ ( K / f ) E - ' Z Z s U S ]  (12b) 

where F is assumed to scale naively with temperature as t P  and F1 is a dimensionless 
function. The renormalisation group equation for F,  is 

where the Gell-Mann-Low function P ( u , )  is defined as usual by 

P ( u J  = K(aU,/aK). (14) 

P ( U J  = -(&L/2)U,(1 -2us/E,)+O(U3 (15a) 

The perturbative expansion for P ( u , )  is obtained from (9) and (10) as 

giving the non-trivial fixed point to second order in E~ of 

U: = E L / 2 + O ( & 3 .  

The exact closed form results ( 5 ) ,  ( 8 a )  and (9) also enable the proof by direct 
substitution that Zs = (1 - 2 u , / ~ ~ ) - l  in (13) provides the solution to all orders and, 
consequently, that U: = E J ~  is exkct through infinite orders in e l .  

The general solution to the renormalisation group equation (13) is 

where the lower integration limit has been chosen for convenience. It is natural to 
introduce the dimensionless crossover scaling field 5, such that 

F = fPF2(5s) (16b) 

which, upon use of ( l s a ) ,  is found to second order as 

5, = ( K /  t ) " - / 2 [  U,( 1 - U,/ U,*)-']( U:)-'. 

A comparison of (12a) and (126) shows that the scaling field 5, of (16) can also be 
expressed in terms of U; by 

where the second equality uses ( 8 a ) .  This relation between 5, and co facilitates the 
comparison between the approximate renormalisation group and the exact solutions. 

Conversion of the renormalised expansion (11) into a form consistent with (16b) 
requires the inversion of [ s [ ( ~ s / ~ , * ) ,  ~ / t ]  from (16d) which is 

(18) U , / U , *  = l,(K/?)-ELi2)[1 -k [,(K/t)-"'i2]-'. 
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It may be shown that (18) is exact to infinite order in E ~ .  Substituting (18) for U, into 
(1 1) for &f and retaining terms to order E: provides the renormalisation group crossover 
scaling form 

sf= t-'{-u,*[5s/(1+5s)l[1+uS*(1+5s)-'~(1)1+O(E:)}. (19) 

On the other hand, using the relation (17) between co and the scaling field CS, the exact 
solution is represented in the more compact form in terms of 5,, 

= t - l {  1 - u,*l,r( 1 + ~ , / 2 ) [  1 + 5,r(i + ~,/2)]-'}. (20) 

It is interesting to note that the second-order renormalisation group crossover 
expansion (19) is just the E, expansion of the full solution (20) truncated to order E:, 
where the E, dependence of the scaling field 5, is not E, expanded. The approximate 
(19) and the exact (20) becomes identical in the limit of &-+ W. This situation is very 
fortunate and it leads to the expectation in general cases that if the exact crossover 
solution in terms of the scaling field is only a finite power series in E ,  the renormalisation 
group crossover is also only a finite E expansion. In fact, we show below that this 
observation is correct within the context of the present model. 

Standard 44 field theory leads to rather complicated E expansions. However, the 
crossover dependence in 44 field theories is based on the solution of the appropriate 
renormalisation group equation which is found to bear a strong correspondence to 
that emerging from the model (1). For instance, n-component 44 field theory yields 
2, and p ( u )  as (Amit 1978) the expansions in dimensionless renormalised U 

2 , , = l + ( n + 8 ) ~ / 6 ~ + [ ( n + 8 ) ~ / 3 6 ~ ~ - ( 2 ~ + 1 4 ) / 2 4 ~ ] ~ ~ + 0 ( ~ ~ )  (21) 

P ( u )  = - E U [ ~  - ( n  + 8 ) ~ / 6 ~  + ( 3 n  + 14)u2/12&] +0(u4)  (22) 

which are similar in form to (10) and ( 1 5 4 ,  respectively. The main difference is that 
(15a) actually terminates at order U:, while (22) does not. The crossover in U involves 
the scaling field 5 which is of the form of (16c) with an extra factor on the right-hand 
side arising from 'mass' renormalisation. The net result is that the analogue of (16d) 
develops &-dependent corrections to the exponent of (1 - U /  U*) and that the natural 
scaling field 7 becomes a function of 5. Thus, a bare scaling amplitude of the form 
(1 + auo+ bui) has a crossover structure like 

l + a u * v ( 1 + ~ ) - 1 + b ( u * ) 2 v 2 ( 1 + r ) ) - 2  (23) 
where 77 = 5(1+ ~)" '" '* '+O(E~).  Equation (23) then has a similar form to (19) for 
the spatially anisotropic model. While the model (1) is considerably simpler than the 
general 44 theory, the close similarities between the analytical structure of the renor- 
malisation group crossovers for scaling amplitudes suggests that our exact results for 
(1) have a counterpart in 44 field theory. 

As mentioned in the introductory paragraphs, exact solutions are extremely useful 
in providing guidance in renormalisation group manipulations. For example, our exact 
solution (20) suggests an alternative (actually an optimal) choice for the definition of 
the interaction parameter to improve convergence of the E, expansion. Modifying the 
definition ( s a )  for U: to 

6: = u:r( 1 + 4 2 )  

f f  = t - ' [ 1 -  ii:f,/(i +f , ) ] .  

(24) 

(250) 

converts (20) into the exact crossover form 
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Applying the renormalisation group analysis to the perturbation expansion (8) as 
written in terms of the variable 12: yields 

sf = t - ’ [  1 - 12,*is/( 1 +is) +O(E?) ]  

where U ,̂* = U,* = E J ~ .  The second-order term is absent in (256) ;  hence, the order E’ 

renormalisation group result ( 2 5 b )  is identical to the exact solution (25a) ,  entirely 
because of the modiJied dejinition of the interaction parameter I?:, a definition which is 
sensible because factors of r( 1 + E J ~ )  appear as the coefficient of cOtCE-’’ in each 
order of perturbation theory (cf ( 8 )  with r( E J ~ )  = ( 2 / ~ J r (  1 + E J ~ ) ) .  (The same 
considerations apply to x.) This example provides the important lesson that E -  

expansion errors may be minimised by absorbing &-dependent factors into the definition 
of the coupling constants when some guidance is available from the structure of 
higher-order contributions or, perhaps, from exact results in special limits. 

The above conclusions are not artefacts of dealing with a convergent perturbation 
expansion as can be seen by considering a hypothetical model which results in the 
asymptotic Borel summable perturbation expansion for the dimensionless property Q :  

Equation (26 ) ,  unlike (S), has zero radius of convergence as a power series in uo in 
both numerator and denominator, but the Borel summed form provides a well defined 
‘exact’ result. Application of the renormalisation group method to the perturbation 
series (26 )  leads to results very similar to (19 ) .  For example, it can be shown that the 
second-order renormalisation group crossover for Q is again simply the E expansion 
to order E *  of the exact result (26)  where the scaling variable is defined as l=  
( K / f ) E ( U O / E )  and is not E expanded. This simple mathematical model emphasises our 
expectation that the 44 field renormalisation group crossover for scaling amplitudes 
very likely exhibits a similar approximation to the exact results. 

The spatially anisotropic spin model considered here is the Laplace transform of 
one which is concurrently applied (in the n + 0 limit) to polymers (Douglas et a1 1986). 
The polymer case is mathematically more complicated as the exact solutions are 
represented in terms of Mittag-Lefler functions (Hardy 1949). On the other hand, the 
polymer model is richer in the sense of also being well defined for any co < 0 and the 
exact solution exhibits a meaningful crossover between co+ -a and co+ +a. The 
renormalisation group crossover provides a good approximation for l,> - 1 ,  but it 
breaks down for 5, S - 1 ,  providing a useful model for studying potential generalisations 
of renormalisation group methods to treat problems with negative coupling constants 
(attractive interactions) where many interesting phenomena occur. 

The truism that exact solutions to simple but non-trivial physical models provide 
important insights into approximate solutions of similar but more complicated problems 
is exemplified by our comparison of renormalisation group descriptions of the crossover 
behaviour of a spatially anisotropic #J* model with that of the exact solution. The 
crossover for scaling amplitudes is represented in the scaling field f ;  in the form of 
Ls( 1 + W’,  whereas crossovers for scaling amplitudes in 44 field theory also involve 
expansions in powers of E T (  1 + r])-’  with r ]  the appropriate scaling field. On the basis 
of the 42 model we anticipate that the 44 renormalisation group crossover for scaling 
amplitudes is likely to be just the E expansion of the exact solution where the scaling 
field r] is not expanded in E. Monte Carlo simulations of crossovers can, perhaps, test 
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this matter further and thereby lend further support to renormalisation group treatments 
of crossover behaviour. 

This research is supported, in part, by NSF grant DMR 83-18560. Useful discussions 
with Jack Douglas on the related polymer problem are also acknowledged. 
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